a2 United States Patent

Malamut et al.

US009424112B1

US 9,424,112 B1
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) EXECUTION PLAN GENERATOR AND
EXECUTION ENGINE FOR INTERFACING
WITH APPLICATION PROGRAMMING
INTERFACES

(71) Applicant: EMC Corporation, Hopkinton, MA
(US)

(72) Inventors: Mark David Malamut, Dana Point, CA
(US); Erik Hansen, Mission Viejo, CA
(US); Scott Auchmoody, Irvine, CA
(US); Jeffrey Norton, Laguna Niguel,
CA (US); Christopher J Hackett,
Boylston, MA (US)

(73) Assignee: EMC Corporation, Hopkinton, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/872,346

(22) Filed: Oct. 1, 2015
(51) Int.CL
GO6F 13/00 (2006.01)
GO6F 9/54 (2006.01)
GO6F 9/46 (2006.01)
(52) US.CL
CPCcccee. GO6F 9/547 (2013.01); GOG6F 9/466
(2013.01)
REQUEST
/dd—systems
RESPONSE
REQUEST
Idd-systems/{sysiem-ID}
WORKFLOW APY
ENGINE (DDMC)
101 103

acus>
<added epoch> ..

(58) Field of Classification Search
CPC ..ot GOGF 8/20; GOGF 9/541
USPC oot 717/100; 719/328
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,347,272 B2* 1/2013 Sugawara ... GOGF 8/458
712/203
8,930,916 Bl1* 1/2015 Soeder GOG6F 8/75
717/131

* cited by examiner

Primary Examiner — Andy Ho
(74) Attorney, Agent, or Firm — Staniford Tomita LLP

(57) ABSTRACT

Embodiments for a method of interfacing with a remote appli-
cation programming interface (API) by defining an execution
plan using an interface definition language and a dependency
configuration file to generate a constrained directed graph of
hierarchically dependent functions of the API, and executing
the execution plan using an executing engine that traverses
the graph to call the API functions in a defined order and
convert data output by a parent function call to input required
by a child function call until a terminal vertex is reached that
results in directing the resulting in an action such as data to
persist and/or affecting the state of a system.

16 Claims, 7 Drawing Sheets

WORKFLOW ENGINE
106

o e

Actior

102

U.S. Patent

Aug. 23, 2016

WORKFLOW
ENGINE
101

Sheet 1 of 7

REQUEST

US 9,424,112 B1

cer———————————— !

/dd-systems

RESPONSE

<system_info>
<id> ...
<name> ..
<link >

</system_info>

</id>
</name>

REQUEST

%

>

A PO ATRIOCRE

cia> RESPONSE
<name> ..

<version> ..
<serialno> ..
<model> ..
<uptime> ..
<state> ..
<gtatus> .

<added epoch> ..

FIG. 1A

AP|
(DDMC)
103

US 9,424,112 B1

Sheet 2 of 7

Aug. 23, 2016

U.S. Patent

WORKFLOW ENGINE

s

R

= "'Q:" =

tor

IS

Pers
Take Further

FIG. 1B

U.S. Patent Aug. 23,2016 Sheet 3 of 7 US 9,424,112 B1

202
chusterid = cluster ormation. clusterUIDid
204
volumadize = tant. sizelnBytes
206

FIG. 2

U.S. Patent

Aug. 23, 2016 Sheet 4 of 7

US 9,424,112 B1

CONSTRUCT EXECUTION PLAN

302

EXECUTE PLAN TO EXECUTE
HIERARCHICAL APl FUNCTION CALLS

304

FIG. 3

U.S. Patent Aug. 23,2016 Sheet 5 of 7 US 9,424,112 B1

AP} specific
Request/Response

Interface Definition
Language
404

Execution Specific
Plan Builder Execution Plan
402 410

Transformations
408

Dependency
Configuration File
4086

FIG. 4

U.S. Patent Aug. 23,2016 Sheet 6 of 7 US 9,424,112 B1

Function: dd-systems 502

Transform: NONE
Source: system_info.id
Target: !

504 506

Transform: XSLT
Source: device_group.id
Target: 1D}

508 509

Goal Function:
graphs i/ praphs

510

Goal: Function:

FIG. 5

U.S. Patent Aug. 23,2016 Sheet 7 of 7 US 9,424,112 B1

APPLICATION
608

Action
interface
606

Execution Plan

502 Execution

Engine
610

SoecificDavice
e

i TRANSPORT
612

CONFIGURATION/
CREDENTIALS
604

FIG. 6

US 9,424,112 B1

1
EXECUTION PLAN GENERATOR AND
EXECUTION ENGINE FOR INTERFACING
WITH APPLICATION PROGRAMMING
INTERFACES

TECHNICAL FIELD

Embodiments are generally directed to remote application
programming interfaces, and more specifically to a workflow
engine for interfacing and interacting with remote APIs with-
out requiring custom code writing.

BACKGROUND

Application developers frequently use application pro-
gramming interfaces (APIs) to build software applications.
An APl is a set of programming instructions and standards for
accessing a software application. Software vendors often
release their own APIs to the public so that other software
developers can design products that can access or utilizes
their services. Interfacing with remote and local APIs is typi-
cally a highly repetitive task that consists of writing custom
code, which comprises a great deal of tedious and quasi-
repetitive functions to query, retrieve, transform, act and iter-
ate on data that is obtained from the API. Not only must such
code be written in the first instance, but also it must be
regularly maintained and updated to accommodate changes
to the applications and interfaces.

What is needed, therefore, is a system and method for API
workflow engine that reduces the development effort and
recurring support costs associated with developing applica-
tions that communicate with APIs by providing a methodol-
ogy and workflow that allows application developers to inter-
act with APIs without requiring the need to write or maintain
extensive amounts of repetitive code.

Applications written for large-scale networks, such as data
backup applications, such as exemplified by the Data Domain
products from EMC Corp. involve the interaction of many
different networked components. Performing the discovery
of devices contained within a target infrastructure such as
data storage arrays (e.g., VMAX, RecoverPoint, DataDo-
main, etc.) is a function performed by many different soft-
ware products. This task also implicates the interaction of
APIs, and as the software required to implement discovery is
typically a rote and well-known process, writing custom code
is generally a time-consuming and inefficient process.

What is yet further needed, therefore, is a programming
model whereby various APIs, devices, or device types are
described by configuration information that concisely
describes the desired data, and without the need for writing
custom code for each device or device type.

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also be inventions.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings like reference numerals desig-
nate like structural elements. Although the figures depict vari-

10

15

20

25

30

40

45

50

55

60

65

2

ous examples, the one or more embodiments and implemen-
tations described herein are not limited to the examples
depicted in the figures.

FIG. 1A illustrates a process of interfacing to a remote API
using a workflow engine, under an embodiment.

FIG. 1B is a functional diagram of an API workflow engine
that significantly reduces the development effort associated
with developing applications that communicate with APIs,
under an embodiment.

FIG. 2 is an example execution plan or sample subset of a
dependency graph that could be used to achieve a specific
goal, under an embodiment.

FIG. 3 is a block diagram that illustrates the two main steps
of a data driven workflow, under an embodiment.

FIG. 4 is a flow diagram that illustrates data flow for an
execution plan builder, under an embodiment.

FIG. 5 illustrates a sample execution plan for a data domain
operation, under an embodiment.

FIG. 6 illustrates operation of the execution engine, under
an embodiment.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
provided below along with accompanying figures that illus-
trate the principles of the described embodiments. While
aspects of the invention are described in conjunction with
such embodiment(s), it should be understood that it is not
limited to any one embodiment. On the contrary, the scope is
limited only by the claims and the invention encompasses
numerous alternatives, modifications, and equivalents. For
the purpose of example, numerous specific details are set
forth in the following description in order to provide a thor-
ough understanding of the described embodiments, which
may be practiced according to the claims without some or all
of these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
embodiments has not been described in detail so that the
described embodiments are not unnecessarily obscured.

It should be appreciated that the described embodiments
can be implemented in numerous ways, including as a pro-
cess, an apparatus, a system, a device, a method, or a com-
puter-readable medium such as a computer-readable storage
medium containing computer-readable instructions or com-
puter program code, or as a computer program product, com-
prising a computer-usable medium having a computer-read-
able program code embodied therein. In the context of this
disclosure, a computer-usable medium or computer-readable
medium may be any physical medium that can contain or
store the program for use by or in connection with the instruc-
tion execution system, apparatus or device. For example, the
computer-readable storage medium or computer-usable
medium may be, but is not limited to, a random access
memory (RAM), read-only memory (ROM), or a persistent
store, such as a mass storage device, hard drives, CDROM,
DVDROM, tape, erasable programmable read-only memory
(EPROM or flash memory), or any magnetic, electromag-
netic, optical, or electrical means or system, apparatus or
device for storing information. Alternatively or additionally,
the computer-readable storage medium or computer-usable
medium may be any combination of these devices or even
paper or another suitable medium upon which the program
code is printed, as the program code can be electronically
captured, via, for instance, optical scanning of the paper or
other medium, then compiled, interpreted, or otherwise pro-
cessed in a suitable manner, if necessary, and then stored in a
computer memory. Applications, software programs or com-

US 9,424,112 B1

3

puter-readable instructions may be referred to as components
or modules. Applications may be hardwired or hard coded in
hardware or take the form of software executing on a general
purpose computer or be hardwired or hard coded in hardware
such that when the software is loaded into and/or executed by
the computer, the computer becomes an apparatus for prac-
ticing the invention. Applications may also be downloaded, in
whole or in part, through the use of a software development
kit or toolkit that enables the creation and implementation of
the described embodiments. In this specification, these imple-
mentations, or any other form that the invention may take,
may be referred to as techniques. In general, the order of the
steps of disclosed processes may be altered within the scope
of the invention.

Embodiments are directed to a processing component in or
associated with a server computer used by a software devel-
oper to implement an application-specific action and/or per-
sistence interface, develop a small configuration file that
directs the workflow engine, and provide a file that contains
the formal API definition. This is a data-centric mode] that
frees developers from implementing specific and customized
code to handle how to get data to and from an API. Built-in
support is provided for authentication, list processing, data
paging, data transformations and multi-threading.

Embodiments are directed to a process that is provided as
a tool to software developers to solve a class of problem with
respect to making calls to a remote API and processing the
data that passes from one call to another in a hierarchical
manner within the remote API. FIG. 1A illustrates a process
of interfacing to a remote API using a workflow engine, under
an embodiment. This represents a generic worktlow that is
performed, and is usually programmatic. A workflow engine
enables this workflow to be described and implemented little
to no API specific code. As shown in FIG. 1A, workflow
engine interacts with a remote API 101 through a series of
requests and responses. These response/request exchanges
represent data access transactions comprising function calls
using the API. The API is hierarchical in that a present or
subsequent call is dependent on a previous call. FIG. 1A
illustrates an example embodiment an API that is part of a
network backup system, and specifically the Data Domain
(DD) system provided by EMC Corp. Thus, API 103 may be
a DataDomain Management Console (DDMC) that provides
interfaces to a number of DD appliances. In general, Data
Domain is a purpose-built backup appliance and has the one
primary task of serving as a backup appliance as a backup to
disk targets, and other figures may be described and illus-
trated with respect to this example. However, it should be
noted that this example embodiment is intended to provide
one example of a use case for the workflow engine 101 and
other embodiments and implementations are also possible.

As shown in FIG. 1A, the API 103 is a remote API in that
it is run on a different platform than the workflow engine 101.
It may comprise an API or some other remote service that is
separate from the workflow engine 101 platform or machine.
Asused herein, the term API (application programming inter-
face) means a software-to-software interface that allows
applications to communicate without any user knowledge or
intervention. It is a set of routines, protocols, and tools for
building software applications, and expresses a software
component in terms of its operations, inputs, outputs, and
underlying types, and defines functionalities that are indepen-
dent of their respective implementations. This allows defini-
tions and implementations to vary without compromising the
interface. APIs often come in the form of a library that
includes specifications for routines, data structures, object
classes, and variables. An API may also simply be a specifi-

20

30

40

45

55

4

cation of remote calls exposed to the API consumers, such as
SOAP (Simple Object Access Protocol) and REST (Repre-
sentational State Transfer) services. Throughout the descrip-
tion and FIGS, the term “API” may be used and should be
understood to refer to a remote API or any other remote
service.

FIG. 1B is a functional diagram of an API workflow engine
that significantly reduces the development effort associated
with developing applications that communicate with remote
APIs, under an embodiment. As stated above, interfacing
with remote APIs is traditionally a time-consuming, highly
repetitive task of writing custom code to query, retrieve, trans-
form, act and iterate on data provided by a remote (or local)
API. As shown in FIG. 1B, an application 102 interacts with
aremote system 104 through an appropriate AP1. A workflow
engine 106 sends a request to the interface and the interface in
turn responds with data. The workflow engine then extracts or
transforms the data, and this loop either iterates through addi-
tional data request/response cycles (as shown in FIG. 1A) or
ends with an action layer such as data persistence or a com-
mand that may affect the state of a system related to the
application. The terminal act of processing the data through
other actions, applications, storage, or any other act is
referred to as the “goal” of the process, and may represent an
end-user task that is performed after any core processing by
the workflow engine.

In an embodiment, the workflow engine 106 can be used to
perform device discovery in large-scale data networks. One
typical example use case is device discovery in a data backup
system with large numbers of storage devices (e.g., flash
memory, disk devices, tape devices, etc.) using different net-
work topologies (e.g., WAN/LAN, hybrid cloud, etc.). The
workflow engine serves to implement a data driven discovery
process that describes the desired device data in a model
whereby various device types are described by configuration.
This reduces or even eliminates the need to write tedious and
repetitive code, which typifies current solutions to data dis-
covery. The workflow engine approach takes advantage ofthe
fact that interfacing with APIs is typically a rote and well-
known process, and provides a reusable model to reduce
repetitive coding practices. For an application within a Data
Domain system, the devices may be DD appliances, or similar
resources, and the API interfacing may be part of a device
discovery process.

In general, API functions typically involve a very strict
hierarchical ordering of the function calls to be performed.
For example, a device discovery process may consist of per-
forming a high-level or root function call that requires no
inputs (other than authentication) followed by one or more
lower level calls until some defined goal data is obtained and
then an ultimate action by another system or application is
performed. The calls between root and goal depend upon
inputs which are derived from the output(s) ofthe higher level
calls. The relationships between these function calls gener-
ally follows a strict tree-like hierarchy, thus a constrained
directed graph can be used to completely describe this hier-
archy. A directed graph is a set of vertices (or nodes) that are
connected together, where all the edges are directed from one
vertex to another, as opposed to an undirected graphs, which
is a graph where the edges a bidirectional. In this constrained
directed graph each graph vertex describes each function call
while each graph edge describes how to map the output data
from a parent call to the input data into each subsequent child
call. In an embodiment, the directed graph represents a graph
of function dependencies that comprises an “execution plan”
that is performed by the workflow engine.

US 9,424,112 B1

5

Once an execution plan exists for a device (qualified by
version), it can be executed (i.e., the plan steps or graph
vertices can be “walked”) to call the API functions in the
necessary order and convert the data output by a parent func-
tion call to the input required by a child function call. This
process is repeated until a terminal (goal) vertex is reached.
The execution of each goal vertex directs an action, such as
storage or further processing of resultant data.

FIG. 2 is an example execution plan or sample subset of a
dependency graph that could be used to achieve a specific
goal, under an embodiment. As shown in FIG. 2, the goal 206
is to persist the sizes of each volume from an appliance (e.g.,
a RecoverPoint device) in a network backup system. The
execution plan of FIG. 2 is simplified, but it highlights the
hierarchal nature of the calls that need to be performed to
satisfy this requirement. In practice an execution plan will
often contain multiple goals. Using such a plan or depen-
dency graph, the discovery process can be performed by
walking the function calls within a graph to obtain each
desired result or goal.

In the example of FIG. 2 the top vertex 202 prescribes that
the URI clusters will be executed on the desired RecoverPoint
device. This URI will return a composite structure. In the
subsequent call to clusters/{clusterld}/volumes/available
204, the input variable clusterld (denoted by the surrounding
braces) is required and needs to be extracted from the com-
posite structure returned by the prior function call. The edge
label between the top two vertices 202 and 204,
clusterld=clustersInformation.clusterUID.id defines the data
mapping between these vertices. The input clusterld is
required by the second vertex, which can be extracted from
the output data returned by the execution of the first vertex
202. The function call to clusters returns a structure named
clustersInformation, which contains a sub-structure within
the field named clusterUID. Furthermore the field clusterUID
is also a sub-structure, which contains a field named 1D,
which will be mapped to the clusterld variable that is required
by the second function. In this manner, the edge label can be
used to map the desired output field clustersInformation.clus-
terUID.id into the required input field clusterld. Note that any
output data at any level may be a list as opposed to ascalarand
in those situations the lists are acted upon in an iterative
fashion. In particular, the clustersinformation structure
returns a list of clusterUIDs and the workflow engine will
automatically iterate on each clusterUID structure.

In an embodiment, there are two distinct steps that are
required to perform a data driven discovery process using the
workflow engine of FIG. 1B. FIG. 3 is a block diagram that
illustrates the two main steps of a data driven API or device
workflow process, under an embodiment. As shown in FIG. 3,
the first step 302 is the construction of an execution plan by an
execution plan builder component. For a specific application,
such as a data discover process, a separate execution plan
must exist for each version of each device to be discovered,
and execution plans will only be created the first time they are
needed to discover a device, at a particular version, supported
by the dependency graph of the execution plan. Execution
plans are automatically rebuilt whenever a change to any of
the DCF or IDL plan inputs is detected. Once an execution
plan or graph has been created, an execution engine uses this
execution plan to execute calls against an instance of the API
function calls (or the device to be discovered, in a particular
example), step 304.

In general, the process of FIG. 3 is embodied within an
application developer tool that provides an execution engine
that performs the steps of remote API walking until the ulti-

25

35

40

45

6

mate data that comprises the goal is obtained. It is then up to
the application or application layer to perform whatever end-
user task is required.

Execution Plan Builder

With respect to the plan construction step 302, an execution
plan builder (EPB) component is responsible for reading the
API function calls or device specific configurations and defi-
nitions to create a device specific execution plan. The inputs
to the EPB are: (1) a dependency configuration file (DCF),
which describes the mapping of data items, resultant data
(goals) to be persisted, what data is to be persisted and how
the device authentication is to be performed; and (2) an inter-
face definition language (IDL), which describes the AP func-
tions and data inputs and outputs for each function. In the case
of most ReST providers, industry standard files such as the
WADL and XSDs are available and can be used directly. In
the case where IDLs are not available, a custom built IDL can
be constructed. In addition, the DCF includes data transfor-
mations, in which, under certain circumstances, output data
from a function will need to be transformed before being used
by a child function. In an embodiment, XSLT transformations
and GroovyShell script transformations are used, where
XSLT is an industry standard that defines how to remap an
XML input document to an XML output document; and
GroovyShell is a java-based scripting language that enables
run-time evaluation. This is useful in the cases where custom
logic needs to be applied to the output data to modify, filter or
otherwise alter the data to be used as input to a subsequent
function call. Transforms are typically embedded directly in
the DCF, but they may also referenced in the DCF by a URI or
other link or reference.

FIG. 4 is a flow diagram that illustrates data flow for an
execution plan builder, under an embodiment. As shown in
FIG. 4, the IDL 402, DCF 404, and possible transformations
406 are input and processed by the execution plan builder
402, which then generates the device specific execution plan
410. The IDL 402 is a document that describes the APIs and
data structures use by a device (e.g., WADL, WSDL, XSD),
where WADL (web application description language) is an
XML document that describes the APIs and data structures
used by a ReST-based device and WSDL (web services
description language) is an XML document that describes the
APIs and data structures used by a web service, XSD (XML
schema definition) is an XML document that describes the
data structures reference by a WADL. The DCF provides
information regarding how to access an API, the application
goals to be retrieved via the API and data transformations.
XSLT (extensible stylesheet language) is an XML document
that describes XML formatting and manipulations and which
are used to describe data transformations; it is an example of
a standard used to define transforms. The execution plan
basically comprises a plan to traverse the API to achieve
certain goals. The execution plan is a list of dependency
functions to obtain specific data, and the transformation spe-
cific API calls required to achieve the path.

In an embodiment, the execution plan builder 402 receives
the input IDL and DCF files and computes a hash on the file
to determine whether or not a plan already exists that matches
those files. If the plan exists and there are no changes, then the
plan is executed. In this way, a plan can be built once and
re-used. Any change in the DCF (or more infrequently the
IDL) will cause a new plan to be generated. In the case of a
change or first time use, the files are read and analyzed. The
builder walks through the IDF and builds an internal graph of
calls and interdependencies of all of the calls. The DCF
defines which parts of the API graph need to be executed to
achieve the goal, which represents the terminal data event

US 9,424,112 Bl

7

(e.g., persistence or default action). The plan thus comprises
(1) dependent function calls to obtain a specific piece of
data, and (2) data transformations specific to the dependency
of the functions (as required by the API or application) in
order to achieve the goal.

For the example of device discovery, once a plan has been
constructed for a specific device (and version of a device),
it can be re-used for additional API functions, device
instances and device re-discovery. The execution plan is
used as input by the execution engine, which executes the
API functions, performs data mapping and processes the
goal data in a subsequent or external application or sub-
system or takes other actions as prescribed in the DCF. FIG.
5 illustrates a sample execution plan for a data domain
operation, under an embodiment, and uses the example
implementation of a DD-based backup system. As shown in
the example of FIG. 5, there is a parent function 502
(Function: dd-systems) and function calls to two subsequent
functions 504 and 506, each with their own goals 508 and
510, and the 506 function involves a transform and an
intermediate function 509. The plan of FIG. 5 illustrates the
hierarchical nature of the function calls and the steps (or
graph vertices) that are traversed to reach the goal or goals.
Execution Engine

Once an execution plan has been formulated, an execution
engine is responsible for running the plan (such as a device
discovery job) and acting upon the results. Using the appro-
priate execution plan, specific device connection details and
credentials (all supplied on the initiating execution engine
API function interface). The engine executes the plan, such
as by performing the steps of the plan or walking a depen-
dency graph, and executing the API function on each vertex
as necessary. The execution engine begins executing inter-
face calls with no dependencies, and then traverses any
subsequent interface calls needed to satisfy all goals.

FIG. 6 illustrates operation of the execution engine, under
an embodiment. As shown in FIG. 6, execution plan 602 is
input to execution engine 610 along with appropriate con-
figuration and credential information 604, which allows for
connection to the remote API and includes API location, user
name, password, and so on. The execution engine 610
basically performs three tasks: (1) it traverses the steps of the
execution plan 602 (walks the plan), (2) interfaces with a
transport function 612, which communicates with the API
through appropriate protocols, and (3) executes any trans-
forms included or referenced within the plan. With respect
to transports, embodiments of the execution engine have
been described in conjunction with the ReST transport
protocol. Additional transports such as SMI-S, WMI and
SSH may also be used. In general, each DCF contains
information regarding what to do with data to achieve a goal
and this data is ultimately used by an application or other
end-user process. Thus, as shown in FIG. 1, the execution
engine may also be functionally coupled to an action inter-
face 606 which interfaces with an application 608 in the
application layer to, for example, further process or store the
data. For a device discover application, device 616 in the
device layer may be accessed by the transport 612 to return
specific device data in response to a request.

For example, with reference to FIG. 2, the call to the URI
clusters can be performed at any time as it has no inputs
while the URI clusters/{clusterld}/volumes/available can
only be called after the input clusterld has been obtained. In
this example graph, the goal persistVolumeSize cannot be
satisfied until the parent vertex URI clusters/{clusterld}/
volumes/available has been executed. This call cannot
execute until the input clusterld is available which requires

10

15

20

25

30

35

40

45

50

55

60

65

8

the execution of the URI clusters. As clusters require no
inputs, it is the first call executed which then allows the
subsequent calls to be executed. This will result in the
eventual execution of the goal that will perform an action or
persistence operation. The goal persistence operation is
specified in the DCF and will be a ReST POST to the URI
specified in the DCF goal. As an example, the goal URI
could be a reference to a URI topology/recoverPointVol-
umeSize. The data to be sent in the body of the ReST POST
will be the data output from the preceding URI after per-
forming any transformations (such as XSLT or Groovy). The
extensible design of the execution engine allows for addi-
tional transport protocols beyond ReST, (e.g.—SMI-S,
SSH) to be implemented as necessary. Furthermore, this
engine is intended to work regardless of any device specifics
such as the transport protocol, authentication model, device
API and data exchange language (e.g., XML, JSON, etc.)

To ensure efficiency, once a vertex has been executed its
relevant output data is cached during each execution of a
plan so as to avoid re-execution of any function call. For
example, the system may assume the URI clusters had been
called during the execution of a different goal prior to the
goal persistVolumeSize. In this case, as clusters was previ-
ously executed the value of clusterld will be cached such
that the clusters URI will not be re-executed during this
single execution plan run. It should be noted that in practice,
function calls may return multiple instances of a structure.
For example, the call to clusters returns a list of structures.
The execution logic automatically handles the return data
whether this data is a scalar or list. No special notation or
logic in the DCF or graph is required. This is automatically
detected and properly handled at execution engine run-time.

With respect to authentication, the execution engine may
be configured to support certain different authentication
models, such as: (1) None—no authentication; (2) HTTP
BASIC—simple username and password supplied in the
HTTP Header; and (3) TOKEN—an authentication URI is
provided which returns a token to be supplied on all sub-
sequent function calls. A new token is acquired automati-
cally by the execution engine when an old token is no longer
valid. Additional authentication models will be added as
needed.

With respect to goal definition, the end result or goal in
case of a data driven discovery is typically to persist the
discovered data and the dependency configuration file will
typically specify multiple goals. Each goal will specify a
single data item or structure to be persisted (e.g., Storage
Array, Disk Pools, Management Devices, etc.) and the
execution engine will persist as many instances of these data
entities as exists on the target device. Each goal action is
specified within the goal attribute of a dataPair. Following is
an example of a DCF goal dataPair specification, under
some embodiments.
<dataPair>

<source value="dd:dd systems”/>

<transform type="“XSLT” path="DataDomainTransform

ManagementDevice .xs1”/>

<goal name="TOPO_MANAGEMENT_DEVICE”

function=*graphs/graph/{graphlD}/vertex”/>
</dataPair>

In the above example, a graph service function graphs/
graph/{graphld}/vertex will be executed on the output data
from the device API dd:dd systems after the data has been
transformed by the named XSLT DataDomainTransform-
ManagementDevice.xsl. DataPairs are used to map data
sources to targets and do not always contain a goal. Dat-
aPairs that do not contain a goal are used to define data

US 9,424,112 Bl

9

mappings that are needed for the eventual execution of a
goal.

Following is an example of a DCF mapping dataPair
specification, under some embodiments.
<dataPair>

<source

value="recoverPointClustersInfomration.clusters

Information.clusterUID.id”/>

<target value="“clusterID”

resource="clusters\\{clusterld}\/volumesVavailable”/>

</dataPair>

This example specifies the relationship between 202 and
204 as illustrated in FIG. 2.

With respect to goal execution, in order to support a
flexible goal model, the goal definition specifies a function
or interface, which is called with the collected data. The
function or interface used by the goal may be internal to the
execution engine or an external process, under some
embodiments.

Depending on implementation, there may also be a des-
ignation for the location of the server where the execution
plans are stored. Different servers may or may not be
employed. As the goal URIs may contain a variable, values
may be specified to the execution engine API before the start
of any job. In the above example, a goal execution model
(e.g., persistence) is implemented using a very simple model
for testing. Goal data is stored in a vertex on the graph server
on located on vmad-157. The goal URI requires a graphld to
be supplied at run-time. This separation of the goal server
and the DCF goal URIs allows the goal server used to be
modified at run-time via the properties files while the goal
execution model is isolated into the execution plan via the
DCF. Alternatively, a more sophisticated goal execution
model may be implemented whereby the goals and the
persistence model are further de-coupled. This allows
changes to the model without requiring any changes to the
DCF.

The workflow engine system comprising the execution
plan and execution engine allows for a great deal of flex-
ibility. Although embodiments have been described with
respect to device discovery, it should be noted that this is just
one example application of the execution plan and worktlow
engine methodology, and such methodology may be applied
to many other applications as well. Namely, any other
problem domain where a hierarchy of data retrievals or
actions exist in conjunction with a final goal execution
model, control execution, or general data processing/storage
operation or application.

With respect to a specific example of device discovery, the
high-level requirements that are satisfied include support for
multiple device types (e.g. Data Domain, RecoverPoint,
VMAX), providing an extensible architecture that supports
additional device types, support for multiple data exchange
formats (e.g. JSON, XML), support for multiple authenti-
cation models (e.g. HTTP BASIC, TOKEN) and for multiple
transport methods (e.g. HTTP, ReST, SNMP, SSH, etc.). It
utilizes a concise configuration file to describe the data to be
extracted, and allows device extracted data to be trans-
formed as necessary. For example, for device discover, it
persists the extracted data to a topology API using a loosely
coupled definition; and utilizes existing system API Inter-
face Definitions Files (IDLs) such as ReST-based WADL
and XSDs when available.

The advantages of using a configuration or “data driven”
approach for API interfacing is that new definitions can
easily be added by a variety of users such as developers,
system administrators, support personnel and third parties,

10

20

25

30

35

40

45

55

60

10

and no code modification are required except in rare cir-
cumstances. The process uses existing IDL.’s when avail-
able, and many defect repairs (e.g., bug fixes, patches, etc.)
can be deployed very quickly without the need to wait for a
software release (e.g.—Service Pack) cycle. Updates can be
applied without service interruption, and defects are
reduced, thus lowering development costs.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense as opposed to an exclusive or exhaustive sense; that is
to say, in a sense of “including, but not limited to.” Words
using the singular or plural number also include the plural or
singular number respectively. Additionally, the words
“herein,” “hereunder,” “above,” “below,” and words of
similar import refer to this application as a whole and not to
any particular portions of this application. When the word
“or” is used in reference to a list of two or more items, that
word covers all of the following interpretations of the word:
any of the items in the list, all of the items in the list and any
combination of the items in the list.

All references cited herein are intended to be incorporated
by reference. While one or more implementations have been
described by way of example and in terms of the specific
embodiments, it is to be understood that one or more
implementations are not limited to the disclosed embodi-
ments. To the contrary, it is intended to cover various
modifications and similar arrangements as would be appar-
ent to those skilled in the art. Therefore, the scope of the
appended claims should be accorded the broadest interpre-
tation so as to encompass all such modifications and similar
arrangements.

What is claimed is:

1. A computer-implemented method of interfacing with a
remote application programming interface (API), compris-
ing:

a processor-based execution plan builder defining an

execution plan using an interface definition language
and a dependency configuration file to generate a
constrained directed graph of hierarchically dependent
functions of the API; and

a processor-based execution engine executing the execu-

tion plan using an executing engine that traverses the
graph to call the API functions in a defined order and
convert data output by a parent function call to input
required by a child function call.

2. The method of claim 1 wherein the graph comprises a
plurality of vertices and edges, and wherein each vertex
describes each function call, and wherein each edge
describes a mapping of output data from a parent call to the
input data into each subsequent child call.

3. The method of claim 1 further comprising converting
the data output by the parent function call to the input
required by the child function call until a terminal vertex is
reached.

4. The method of claim 2 wherein a terminal vertex
represents a goal that directs a resulting action.

5. The method of claim 1 wherein the interface definition
language describes the API functions and data inputs and
outputs for each function.

6. The method of claim 1 wherein the dependency con-
figuration file describes a mapping of data items, goals to be
achieved, and interface connection details.

7. The method of claim 6 wherein the dependency con-
figuration file includes transformations to transform output
data from a parent function prior to use by a child function.

US 9,424,112 Bl

11

8. The method of claim 1 wherein the execution plan is
generated by a plan builder that analyzes interface definition
language files and dependency language files to determine if
a current valid plan exists, and if not, generates an execution
plan of function calls and interdependencies of the API
function calls.
9. The method of claim 1 wherein the API comprises a set
of functions configured to process data within a large-scale
data backup network comprising a plurality of backup
appliances, and wherein the set comprises a root function
call followed by one or more low-level calls that are
executed until goal data is obtained and an action is taken,
and wherein the calls between root function and goal depend
upon inputs that are derived from outputs of one or more
higher level calls.
10. A system for interfacing with a remote application
programming interface (API), comprising:
an execution plan builder processing component of a
server computer generating an execution plan using an
interface definition language and a dependency con-
figuration file to generate a constrained directed graph
of hierarchically dependent functions of the API; and

an execution engine processing component of the server
computer, executing the execution plan using an
executing engine that traverses the graph to call the API
functions in a defined order and convert data output by
a parent function call to input required by a child
function call until a terminal vertex is reached, the
terminal vertex representing a goal for further process-
ing of the data.

11. The system of claim 10 wherein the graph comprises
a plurality of vertices and edges, and wherein each vertex
describes each function call, and wherein each edge

10

15

20

25

12

describes a mapping of output data from a parent call to the
input data into each subsequent child call.

12. The system of claim 11 wherein the interface defini-
tion language describes the API functions and data inputs
and outputs for each function.

13. The system of claim 10 wherein the dependency
configuration file describes a mapping of data items, goals to
be achieved, and interface connection details.

14. The system of claim 13 wherein the dependency
configuration file includes transformations to transform out-
put data from a parent function prior to use by a child
function.

15. The system of claim 10 wherein the execution plan
builder analyzes interface definition language files and
dependency language files to determine if a current valid
plan exists, and if not, generates an execution plan of
function calls and interdependencies of the API function
calls.

16. A computer program product, comprising a non-
transitory computer-readable medium having a computer-
readable program code embodied therein, the computer-
readable program code adapted to be executed by one or
more processors to interface with a remote application
programming interface (API), comprising:

defining an execution plan using an interface definition

language and a dependency configuration file to gen-
erate a constrained directed graph of hierarchically
dependent functions of the API; and

executing the execution plan using an executing engine

that traverses the graph to call the API functions in a
defined order and convert data output by a parent
function call to input required by a child function call.

#* #* #* #* #*

